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Abstract
The electronic and magnetic properties of FeBr2 have been studied in the framework of the
local spin-density approximation (LSDA). In order to improve the intrinsic deficiency of the
LSDA in describing orbital magnetism, two different orbital polarization corrections have been
applied to Fe ions. The spin and orbital magnetic moments on the Fe and Br sites have been
evaluated using the fully relativistic version of the full-potential local orbitals minimum basis
method and the full-potential linearized augmented plane-wave + local orbitals method. We
found a partially quenched orbital moment on the Fe ion and a small spin moment on the
p states of the Br ion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For several decades, intense experimental and theoretical
efforts have been devoted to the investigation of electronic and
magnetic properties of anhydrous dibromide of iron, FeBr2, as
an antiferromagnetic (AFM) insulator. FeBr2 under an external
field of 3.15 T, undergoes a magnetic phase transition from
an antiferromagnetic phase to a paramagnetic phase with Néel
temperature (TN = 14.2 K) [1]. Due to its crystal and magnetic
structure, it is also a very suitable candidate for comparing to
the Ising model [2]. FeBr2 is a well-known model system for
the study of antiferromagnetism [3–5]. It adopts a hexagonal
layer-type structure, which consists of layers of metal atoms
separated by two layers of halide atoms. Neutron diffraction
investigations show that the magnetic structure of FeBr2

consists of ferromagnetic (FM) sheets of moments within the
iron layers with magnetic moments oriented parallel to the
hexagonal c axis [6]. The spin direction for the FM sheets
alternates from layer to layer. Wilkinson et al emphasized that,
within the experimental error, the magnetic moment on the Fe
site (4.4 ± 0.7 μB) is close to the atomic moments in which the
orbital contribution is assumed to be quenched [6].

The trends witnessed here in the magnetic properties
of FeBr2 are the study of orbital magnetism in an

antiferromagnetic insulator. The magnetic properties of
magnetic materials are a combination of two order parameters,
namely spin and orbital magnetic moments. Based on
standard theoretical models, it is presupposed that ligand
field interactions quench the orbital magnetic moment in 3d
transition metals. Ropka et al [7] within their quasiatomic
calculations, and later Youn et al [8] using an all-electron fully
relativistic density functional method included by an intra-
orbital correlation energy U on the d electrons, have shown
that the orbital moment is indeed partially quenched by a ligand
field in FeBr2.

It is a well-known fact that the orbital moments of 3d
transition metals calculated in the framework of the LSDA are
usually underestimated by a factor of two [9]. In the present
work we address two orbital polarization (OP) corrections in
the LSDA. It is found that OP corrections predicted almost
correctly the orbital moments of 3d transition ions. The
paper is organized as follows: section 2 contains details of
the crystal structure and the computational methods used,
including the two OP corrections; section 3 presents the results
and discussion (calculated spin moments and orbital moments),
and, finally, the paper is summarized in section 4.
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Figure 1. Antiferromagnetic ordering for crystal structure of FeBr2.
The ferromagnetic iron layers are perpendicular to the hexagonal
c-axis. The large and small balls indicate the Br and Fe atoms,
respectively.

2. Computational methods

FeBr2 structure type is of hexagonal layered CdI2 type (space
group p3̄m1, No. 164 in international tables [10]) with experi-
mental lattice parameters a = 7.13 and c = 11.76 Bohr radii.
If the iron atom is located at (0,0,0), the coordinates of the
two bromine atoms are ±(1/3, 2/3, 1/4). The hexagonal layer
of Fe cations is sandwiched (Br–Fe–Br) by similar (but dis-
placed) layers of Br above and below, with Fe–Br layer spacing
such that the Fe ion is surrounded by a nearly perfect bromine
octahedron with an 54.47◦ rotation around the c axis at ambi-
ent pressure. The Fe–Br distance in FeBr6 octahedra is 5.05
Bohr radii. As the compound has an AFM ground state with
FM iron sheets, we doubled the Bravais lattice unit cell along
the c axis using two Fe atoms and four Br atoms per supercell,
as shown in figure 1.

To determine the magnetic properties of FeBr2, the
four-component Kohn–Sham–Dirac (KSD) equation in the
framework of density functional theory [11], which implicitly
contains spin–orbit coupling up to all orders, is solved self-
consistently. We use the relativistic version of the full-potential
local orbital method (FPLO) [12, 13]. The full Brillouin
zone was sampled with regular mesh containing 12 × 12
× 6 k-points. The Perdew–Wang parameterization [14] of

the exchange–correlation (XC) potential in the local spin-
density approximation was used. In this method, the following
minimum basis set was adopted: the 3s3p; 4s4p3d states of
Fe and the 3s3p; 4s4p states of Br were treated as valence
states. The inclusion of Fe and Br 3s 3p semicore states was
necessary to account for the non-negligible core–core overlap.
The site-centered potentials and densities were expanded in
spherical harmonic contributions up to lmax = 12. The
spatial extension of the basis orbitals, controlled by a confining
potential (r/r0)

4, was optimized to minimize the total energy.
A major advantage of this potential is that the far ranging tails
of these valence orbitals are compressed, which enhances the
suitability of the states for the band structure calculations.

In the LSDA for BCC Fe, magnetic spin moments are
obtained typically within 5% of experiment. On the other hand,
the orbital moment of BCC Fe is found to be a factor of 2
smaller compared with the experimental value (0.08 μB) in this
approach [15]. For a better description of orbital magnetism in
the d shell of the Fe atom, different OP corrections to the LSDA
have been suggested.

OP corrections for the unfilled Fe 3d subshell states were
included in the orthogonal formalism and as far as possible
derived from KSD theory by Eschrig et al [16–18]. The
correction is added to the LSDA exchange and correlation
energy functional:

EOPE
l = − 1

4

∑

σ

pl Nσ (2l + 1 − Nσ )M
2
lσ , (1)

Mlσ =
∑

k,m

nk〈ψk |ϕmσ 〉m〈ϕmσ |ψk〉, (2)

where Mlσ are the orbital moments of the Fe 3d spin subshells.
Nσ = ∑

k nk |〈ψk |ϕmσ 〉|2, and σ = ↑ (↓) denotes the majority
(minority) spin direction. The variables nk , ψk , and ϕmσ are
occupation numbers, KSD bispinor orbitals and scalar local l
basis functions, respectively. The l and m denote azimuthal
and magnetic quantum numbers. The coefficient pl increases
linearly within a shell. The value of the coefficient pl , which
is calculated for free iron ions (Fe2+) is 57.6 meV [16].
In order to compare our results with a frequently employed
empirical OP correction suggested by Eriksson et al [19] in
a spin dependent form for incompletely filled d shells, we
alternatively added a term EOPB

l = − ∑
σ Blσ M2

lσ /2 to the XC
energy functional. Here, Blσ is the related Racah parameter
and calculated from the Fe 3d radial wavefunctions. The
final values of spin and orbital moments are obtained from
corresponding projections on the atom basis states.

We also compare our calculated spin and orbital moments
with other existing methods. We completed a series of
LSDA + U calculations in its two implementations: the
atomic limit (AL) and around mean field (AMF). Although,
for transition metal ions, the d orbitals are assumed to be well
localized, and therefore best described by the atomic limit
extension of LSDA + U , for the sake of completeness, we also
added a study with AMF [20–22]. Relativistic LSDA + U
electronic structure calculations were performed using the
WIEN2k code [24, 25], which implements the full-potential
linearized augmented plane-waves (LAPW) method with local
orbitals. The spin–orbit interaction (assuming (001) direction
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of magnetization) was included within the second variation
step method (see [23] and references therein). Radii of atomic
spheres were set to 2.8 Bohr radii for both atomic spheres.
The Brillouin zone (BZ) was sampled on a regular set of
12 × 12 × 6 k-points in the full BZ, leading to 100 k-points in
the irreducible wedge of the first BZ. We performed numerical
tests for up to 5000 k-points in the BZ to ensure that our
results converged well with respect to BZ sampling. The
RKmax parameter for controlling the basis size was set to 7.5,
giving more than 100 basis functions per atom and leading to
highly converged results. The Fe 3d orbitals were taken to be
the correlated orbitals. For the sake of comparison, the same
Slater parameters were used for all calculations. The Hund’s
rule exchange J H = (F2 + F4)/14 = 0.9 eV and the ratio
F4/F2 = 0.625 are close to ionic values [25], which leads to
F2 = 7.9 eV and F4 = 5.0 eV. The parameter F0 = U is less
well-known since it is more affected by screening effects. We
used a literature value for U = 6 eV [25].

3. Results and discussion

The d electrons of iron and p electrons of bromide ions
determine the magnetic behavior of FeBr2. In a fully ionic
picture the Fe2+ ions are in a 3d6 configuration while Br− ions
have a 4p6 configuration. Therefore, based on Hund’s rules, the
quantum numbers of Fe2+ would be S = 2 and L = 2, while
both are zero for Br−. These quantum numbers for FeBr2 yield
the ground state 4D, with a total magnetic moment μ = 6μB

on the Fe site and no magnetic moment in the Br site.
In a slightly different view of the structure of FeBr2,

as the Fe ions are surrounded by slightly distorted bromine
octahedra, the positions of the octahedra lead to a new natural
basis for Fe 3d orbitals. In the local coordinate system for
every octahedron, in which the z axis is pointed to one of the
bromine ions (there is no apical bromine) and the x and y axes
are directed to the basal plane bromines, a regular octahedron
of Br− ions produces a ligand field which splits the Fe 3d
manifold into three lower lying t2g states (dxy , dxz , and dyz)
and two eg states (dx2−y2 , and d3z2−r2 ) of higher energy. Also
the Br 4p states are split into σ levels, the orbitals of which
point to the Fe site and into π levels and they are perpendicular
to the Fe–Br bonds. This ligand field provides a splitting
resulting from the hybridization between the Fe eg states and
Br 4p orbitals. The hybridization is strongest for the σ bonds
between in-plane Fe 3dx2−y2 and in-plane Br 4px,y orbitals,
which leads to bonding σ and anti-bonding σ ∗ Fe 3dx2−y2 -
Br 4px,y covalency states. The formation of the lower lying
σ bonding states results in the wide 4p band, whereas the eg

bond energy is raised by the anti-bonding. In between these
bands there are other bands formed from hybrids which have
a smaller splitting between bonding and anti-bonding states.
Figure 2 shows partial density of states for Fe 3d and Br 4p
of FeBr2. It can be seen that the eg-density of states (DOS)
and p manifold of both spin channels imply a strong p eg

hybridization, while no such feature is observed for the t2g-
DOS. Therefore, the p t2g hybridization can be neglected.

In the ligand field interaction picture, it is easy to
show that the orbital moments are completely quenched.
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Figure 2. Partial density of states of Fe 3d and Br 4p of FeBr2 states
in the framework of the LSDA.

To illustrate this argument we consider a simplified model
of a 3d transition metal ion in the perfect octahedral ligand
field (for a comprehensive discussion see the textbook by
Figgis et al [26]). Neglecting the spin-flip process, we
consider only one partially filled spin subshell. The three-
fold degenerate t2g and two-fold degenerate eg states can
be represented by real d-functions with {|xy〉, |xz〉, |yz〉} =
{(|+2〉− |−2〉)/i√2, (|+1〉− |−1〉)/i√2, (|+1〉+|−1〉)/√2},
and {|x2 − y2〉, |3z2 − r 2〉} = {(|+2〉 − |−2〉)/√2, |0〉},
respectively. The |m〉 means the 3d-orbital with magnetic
number. It is obvious that the expectation value of the
orbital moment is zero for each eigenfunction of the ligand
Hamiltonian and therefore the total orbital moment of the 3d-
subshell is completely quenched.

Disregarding spin–orbit coupling, the direction of spin
is not related to the real space and the resulting doubled
antiferromagnetic primitive cell has rhombohedral symmetry.
This allows a further splitting of the t2g manifold into two-
fold degenerate e′

g and non-degenerate a1g states (closed bumps
shown in figure 2 originate from further splitting of t2g states
in majority and minority partial DOS). In both spin channels
eg and t2g bands are well separated for all momenta. The
LSDA result for the t2g and eg bandwidths is 0.6 eV, and the
ligand field splitting of the centroids of these bands is about
0.6 eV. Thus the exchange splitting (about 2 eV) is larger
than the ligand field splitting, which is a consequence of the
ferromagnetic phase on the iron sheets. The calculated spin and
orbital magnetic moments of Fe and Br for [001] magnetization
axes are summarized in table 1. The LSDA gives spin moments
of 3.49 and 0.17 μB/atom for Fe and Br, respectively. In the
ligand field model, one can estimate that both t2g and eg orbitals
of the majority Fe-d bands are fully occupied, and only one
of the minority t2g orbitals is occupied. Therefore, the spin
contribution to the total magnetic moment of an Fe atom from
the DOS study is 4 μB. However, the LSDA calculated spin
moment of Fe is smaller than the value estimated in the ligand
field model by about 12%. The spin moment of the Fe atoms
is parallel to that of the Br atoms. The orbital moment of the
Br atoms is almost negligible compared with that of the spin
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moment. The orbital moment of Fe is also parallel to the spin
moment of Fe, being consistent with Hund’s rules for 3d shells
more than half-filled. Hence the resultant magnetic moments
of Fe and Br are ferromagnetically coupled in FeBr2.

An interesting question is the origin of the small orbital
moment on an Fe ion (μl = 0.14 μB) in the presence of spin–
orbit coupling in our LSDA calculation. As we have seen,
the small lattice distortion modified the electronic structure
insignificantly, provided that the symmetry of the structure is
not changed. However, due to the action of spin–orbit coupling
on the Fe ions, a small deviation of the nearest-neighbor
octahedra can be expected, which lacks the perfect octahedral
symmetry, resulting in new states. In this new picture the origin
of the small orbital moment may be understood.

In our LSDA + U calculations, with the literature values
of U = 6 eV and J H = 0.9 eV and in the framework of
LAPW, the spin moments of Fe increased by 6% and 0.2%
for AL (3.70 μB) and AMF (3.50 μB) approaches, while the
spin moment of Br reduced by 58% and 17%, respectively.
Meanwhile, the orbital moment of Fe increases dramatically
by a factor of about four (AL) and five (AMF) compared with
the LSDA value (see table 1). Note that increasing U reduces
the total charges in the Fe muffin-tin spheres and increases
the total charges in the Br muffin-tin spheres, thus increasing
the ionicity of both the Fe and Br atoms. In the LSDA,
the unquenched orbital moment arises mainly from the spin–
orbit interaction in the localized 3d orbital where the atomic
field is deformed in a relatively slight manner by the ligand
field. The strong Coulomb correlations further localize the
3d orbitals and suppress the ligand field on the metal atoms.
This compound is thus expected to possess relatively large
unquenched orbital moments. Although the calculated orbital
moments from the LSDA are usually too small compared with
experimental results, the on-site Coulomb energy U in both
LSDA + U AL and LSDA + U AMF calculations significantly
enhances the orbital moment on the Fe site at FeBr2, and gives
large orbital moments 0.75 and 0.66 μB, respectively.

We have also included in our study on orbital magnetism
of FeBr2 the results of two OP corrections. Table 1 shows the
results of both OP corrections for spin and orbital contributions
to the magnetic moments of the Fe atom in FeBr2. As is
usually the case, OP corrections influence the spin moments
only marginally. However, the calculated orbital moments of
Fe in both OPB (0.43 μB) and OPE (0.60 μB) schemes are
three and four times larger than the LSDA calculated value
(0.14 μB). We also found that the orbital moment of Fe 3d
within the OPE correction is roughly in good agreement with
LSDA + U AL calculations. One may also compare the orbital
moment evaluated with an OPB correction, which is smaller
than the calculated value of LSDA + U AL by about 35%.

Ropka et al have shown in their quasiatomic calculations
that the orbital moment of Fe is 0.78 μB [7]. Meanwhile, Youn
et al using the full relativistic full-potential linear muffin-tin
orbital (LMTO) method in combination with the LSDA + U
approach have shown an orbital moment of 0.66 μB/Fe [8].
These findings are in qualitative agreement with our results.
On the other hand, our calculated spin magnetic moments
of iron in the considered compound are smaller by about

Table 1. Calculated spin magnetic moment (μs) and orbital
magnetic moments (μl) of iron and bromine and total magnetic
moment of iron μ = μs + μl. The magnetic moments are in Bohr
magnetons.

μFe
s μFe

l μFe μBr
s

LSDA 3.49 0.14 3.63 0.17
LSDA + U AMF 3.50 0.75 4.25 0.14
LSDA + U AL 3.70 0.66 4.36 0.07
LSDA + OPB [19] 3.57 0.43 4.00 0.20
LSDA + OPE [16] 3.58 0.60 4.18 0.20
Expt [6] 4.4 ± 0.7

20% than the experimental value estimated by Wilkinson
et al [6] in their neutron diffraction investigations. In this
sense, adding a large orbital contribution to the spin magnetic
moment modifies the total magnetic moment of iron such that
it becomes consistent with the experimental value (see table 1).

In LSDA band structure calculations, correlation and
exchange effects are taken into account within approximation
of a homogeneous electron liquid. Within this model, an
intermetallic state takes place in contradiction with the nature
of the antiferromagnetic insulator of FeBr2 with a gap of about
2 eV [8]. Therefore we note that our LSDA calculations do
not give correct results for the gap size of FeBr2, exhibiting
qualitatively erroneous non-zero DOS at the Fermi level (see
figure 2). Both OP corrections also predict, however, an
intermetallic ground state. In FeBr2, the 3d electrons are
strongly localized at the Fe site and hop from time to time from
one site to the next. In this case, the Coulomb interaction, U ,
between two holes (or two electrons) on the same site will be
important and may be the reason for the insulating behavior of
the compound. This point was discovered by Youn et al [8], in
their LMTO study.

4. Conclusions

Density functional theory calculations were performed for the
antiferromagnetic insulator FeBr2. We have calculated the
spin and orbital moments of individual components of FeBr2,
including spin–orbit coupling, and two variants of LSDA + U
and two variants of orbital polarization corrections. The large
orbital moment for iron ions varies with different methods from
0.43 μB to 0.70 μB. We also found a small amount of spin
magnetic moment for the Br ion. Further experiments, such as
x-ray magnetic circular dichroism, to check these predictions
are desirable.
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